Continuous deformations of harmonic maps and their unitons

Alexandru Aleman, María J. Martín*, Anna Maria Persson, Martin Svensson

*Kontaktforfatter for dette arbejde

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review


It is known that any harmonic map of finite uniton number from a Riemann surface into U (n) can be deformed into a new harmonic map with an associated S1-invariant extended solution. We study this deformation in detail using operator-theoretic methods. In particular, we show that the corresponding unitons are real analytic functions of the deformation parameter, and that the deformation is closely related to the Bruhat decomposition of the corresponding extended solution.

TidsskriftMonatshefte fur Mathematik
Udgave nummer4
Sider (fra-til)599-614
Antal sider16
StatusUdgivet - 1. dec. 2019

Fingeraftryk Dyk ned i forskningsemnerne om 'Continuous deformations of harmonic maps and their unitons'. Sammen danner de et unikt fingeraftryk.