Consistency, anonymity, and the core on the domain of convex games

Toru Hokari*, Yukihiko Funaki, Peter Sudhölter

*Kontaktforfatter for dette arbejde

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

6 Downloads (Pure)

Abstrakt

We show that neither Peleg’s nor Tadenuma’s well-known axiomatizations of the core by non-emptiness, individual rationality, super-additivity, and max consistency or complement consistency, respectively, hold when only convex rather than balanced TU games are considered, even if anonymity is required in addition. Moreover, we show that the core and its relative interior are the only two solutions that satisfy Peleg’s axioms together with anonymity and converse max consistency on the domain of convex games.

OriginalsprogEngelsk
TidsskriftReview of Economic Design
Vol/bind24
Udgave nummer3-4
Sider (fra-til)187-197
ISSN1434-4742
DOI
StatusUdgivet - dec. 2020

Fingeraftryk

Dyk ned i forskningsemnerne om 'Consistency, anonymity, and the core on the domain of convex games'. Sammen danner de et unikt fingeraftryk.

Citationsformater