Abstract
The multiplicative complexity of a Boolean function f is defined as the minimum number of binary conjunction (AND) gates required to construct a circuit representing f, when only exclusive-or, conjunction and negation gates may be used. This article explores in detail the multiplicative complexity of symmetric Boolean functions. New techniques that allow such exploration are introduced. They are powerful enough to give exact multiplicative complexities for several classes of symmetric functions. In particular, the multiplicative complexity of computing the Hamming weight of n bits is shown to be exactly n − Hℕ(n), where Hℕ(n) is the Hamming weight of the binary representation of n. We also show a close relationship between the complexity of symmetric functions and fractals derived from the parity of binomial coefficients.
Originalsprog | Engelsk |
---|---|
Titel | Mathematical Foundations of Computer Science 2006 : 31st International Symposium, MFCS 2006, Stará Lesná, Slovakia, August 28-September 1, 2006. Proceedings |
Antal sider | 11 |
Vol/bind | 4162 |
Publikationsdato | 2006 |
Sider | 179-189 |
DOI | |
Status | Udgivet - 2006 |
Begivenhed | 31st International Symposium on Mathematical Foundations of Computer Science 2006 (MFCS 2006) - High Tatras, Slovakiet Varighed: 28. aug. 2006 → 1. sep. 2006 Konferencens nummer: 31 |
Konference
Konference | 31st International Symposium on Mathematical Foundations of Computer Science 2006 (MFCS 2006) |
---|---|
Nummer | 31 |
Land/Område | Slovakiet |
By | High Tatras |
Periode | 28/08/2006 → 01/09/2006 |
Navn | Lecture Notes in Computer Science |
---|---|
Vol/bind | 4162 |