Computational Explorations of the Thompson Group T for the Amenability Problem of F

Søren Haagerup, Uffe Haagerup, Maria Ramirez-Solano*

*Kontaktforfatter for dette arbejde

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Abstrakt

It is a long standing open problem whether the Thompson group F is an amenable group. In this article, we show that if A, B, C denote the standard generators of Thompson group T and (Formula presented.) then (Formula presented.) Moreover, the upper bound is attained if the Thompson group F is amenable. Here, the norm of an element in the group ring (Formula presented.) is computed in (Formula presented.) via the regular representation of T. Using the “cyclic reduced” numbers (Formula presented.), and some methods from our previous article [Haagerup et al. 15] we can obtain precise lower bounds as well as good estimates of the spectral distributions of (Formula presented.) where τ is the tracial state on the group von Neumann algebra L(T). Our extensive numerical computations suggest that (Formula presented.) and, thus that F might be non-amenable. However, we can in no way rule out that (Formula presented.).

OriginalsprogEngelsk
TidsskriftExperimental Mathematics
ISSN1058-6458
DOI
StatusE-pub ahead of print - 30. aug. 2019

    Fingerprint

Citationsformater