TY - JOUR
T1 - Comparative SAXS and DSC study on stratum corneum structural organization in an epidermal cell culture model (ROC)
T2 - Impact of cultivation time
AU - Kuntsche, Judith
AU - Herre, Angela
AU - Fahr, Alfred
AU - Funari, Sérgio S
AU - Garidel, Patrick
N1 - Copyright © 2013 Elsevier B.V. All rights reserved.
PY - 2013
Y1 - 2013
N2 - Cell cultured skin equivalents present an alternative for dermatological in vitro evaluations of drugs and excipients as they provide the advantage of availability, lower variability and higher assay robustness compared to native skin. For penetration/permeation studies, an adequate stratum corneum barrier similar to that of human stratum corneum is, however, a prerequisite. In this study, the stratum corneum lipid organization in an epidermal cell culture model based on rat epidermal keratinocytes (REK organotypic culture, ROC) was investigated by small-angle X-ray scattering (SAXS) in dependence on ROC cultivation time and in comparison to native human and rat stratum cornea. In addition, the thermal phase behavior was studied by differential scanning calorimetry (DSC) and barrier properties were checked by measurements of the permeability of tritiated water. The development of the barrier of ROC SC obtained at different cultivation times (7, 14 and 21days at the air-liquid interface) was connected with an increase in structural order of the SC lipids in SAXS measurements: Already cultivation for 14days at the air-liquid interface resulted overall in a competent SC permeability barrier and SC lipid organization. Cultivation for 21days resulted in further minor changes in the structural organization of ROC SC. The SAXS patterns of ROC SC had overall large similarities with that of human SC and point to the presence of a long periodicity phase with a repeat distance of about 122Å, e.g. slightly smaller than that determined for human SC in the present study (127Å). Moreover, SAXS results also indicate the presence of covalently bound ceramides, which are crucial for a proper SC barrier, although the corresponding thermal transitions were not clearly detectable by DSC. Due to the competent SC barrier properties and high structural and organizational similarity to that of native human SC, ROC presents a promising alternative for in vitro studies, particularly as it can be obtained under overall rather straightforward cell culture conditions and thus low assay costs.
AB - Cell cultured skin equivalents present an alternative for dermatological in vitro evaluations of drugs and excipients as they provide the advantage of availability, lower variability and higher assay robustness compared to native skin. For penetration/permeation studies, an adequate stratum corneum barrier similar to that of human stratum corneum is, however, a prerequisite. In this study, the stratum corneum lipid organization in an epidermal cell culture model based on rat epidermal keratinocytes (REK organotypic culture, ROC) was investigated by small-angle X-ray scattering (SAXS) in dependence on ROC cultivation time and in comparison to native human and rat stratum cornea. In addition, the thermal phase behavior was studied by differential scanning calorimetry (DSC) and barrier properties were checked by measurements of the permeability of tritiated water. The development of the barrier of ROC SC obtained at different cultivation times (7, 14 and 21days at the air-liquid interface) was connected with an increase in structural order of the SC lipids in SAXS measurements: Already cultivation for 14days at the air-liquid interface resulted overall in a competent SC permeability barrier and SC lipid organization. Cultivation for 21days resulted in further minor changes in the structural organization of ROC SC. The SAXS patterns of ROC SC had overall large similarities with that of human SC and point to the presence of a long periodicity phase with a repeat distance of about 122Å, e.g. slightly smaller than that determined for human SC in the present study (127Å). Moreover, SAXS results also indicate the presence of covalently bound ceramides, which are crucial for a proper SC barrier, although the corresponding thermal transitions were not clearly detectable by DSC. Due to the competent SC barrier properties and high structural and organizational similarity to that of native human SC, ROC presents a promising alternative for in vitro studies, particularly as it can be obtained under overall rather straightforward cell culture conditions and thus low assay costs.
U2 - 10.1016/j.ejps.2013.06.003
DO - 10.1016/j.ejps.2013.06.003
M3 - Journal article
C2 - 23770376
SN - 0928-0987
VL - 50
SP - 577
EP - 585
JO - European Journal of Pharmaceutical Sciences
JF - European Journal of Pharmaceutical Sciences
IS - 5
ER -