TY - JOUR
T1 - Comment on "Artificial intelligence in gastroenterology: A state-of-the-art review"
AU - Bjørsum-Meyer, Thomas
AU - Koulaouzidis, Anastasios
AU - Baatrup, Gunnar
N1 - ©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.
PY - 2022/4/28
Y1 - 2022/4/28
N2 - Colon capsule endoscopy (CCE) was introduced nearly two decades ago. Initially, it was limited by poor image quality and short battery time, but due to technical improvements, it has become an equal diagnostic alternative to optical colonoscopy (OC). Hastened by the coronavirus disease 2019 pandemic, CCE has been introduced in clinical practice to relieve overburdened endoscopy units and move investigations to out-patient clinics. A wider adoption of CCE would be bolstered by positive patient experience, as it offers a diagnostic investigation that is not inferior to other modalities. The shortcomings of CCE include its inability to differentiate adenomatous polyps from hyperplastic polyps. Solving this issue would improve the stratification of patients for polyp removal. Artificial intelligence (AI) has shown promising results in polyp detection and characterization to minimize incomplete CCEs and avoid needless examinations. Onboard AI appears to be a needed application to enable near-real-time decision-making in order to diminish patient waiting times and avoid superfluous subsequent OCs. With this letter, we discuss the potential and role of AI in CCE as a diagnostic tool for the large bowel.
AB - Colon capsule endoscopy (CCE) was introduced nearly two decades ago. Initially, it was limited by poor image quality and short battery time, but due to technical improvements, it has become an equal diagnostic alternative to optical colonoscopy (OC). Hastened by the coronavirus disease 2019 pandemic, CCE has been introduced in clinical practice to relieve overburdened endoscopy units and move investigations to out-patient clinics. A wider adoption of CCE would be bolstered by positive patient experience, as it offers a diagnostic investigation that is not inferior to other modalities. The shortcomings of CCE include its inability to differentiate adenomatous polyps from hyperplastic polyps. Solving this issue would improve the stratification of patients for polyp removal. Artificial intelligence (AI) has shown promising results in polyp detection and characterization to minimize incomplete CCEs and avoid needless examinations. Onboard AI appears to be a needed application to enable near-real-time decision-making in order to diminish patient waiting times and avoid superfluous subsequent OCs. With this letter, we discuss the potential and role of AI in CCE as a diagnostic tool for the large bowel.
KW - Artificial Intelligence
KW - COVID-19
KW - Capsule Endoscopy/methods
KW - Colonic Polyps/diagnostic imaging
KW - Colonoscopy/methods
KW - Colorectal Neoplasms/diagnosis
KW - Gastroenterology
KW - Humans
U2 - 10.3748/wjg.v28.i16.1722
DO - 10.3748/wjg.v28.i16.1722
M3 - Comment/debate
C2 - 35581959
VL - 28
SP - 1722
EP - 1724
JO - World Journal of Gastroenterology
JF - World Journal of Gastroenterology
SN - 1007-9327
IS - 16
ER -