Colored HOMFLYPT counts holomorphic curves

Tobias Ekholm, Vivek Shende

Publikation: Working paperForskning

1 Downloads (Pure)

Abstrakt

We compute the contribution of all multiple covers of an isolated rigid embedded holomorphic annulus, stretching between Lagrangians, to the skein-valued count of open holomorphic curves in a Calabi-Yau 3-fold. The result agrees with the predictions from topological string theory and we use it to prove the Ooguri-Vafa formula that identifies the colored HOMFLYPT invariants of a link with a count of holomorphic curves ending on the conormal Lagrangian of the link in the resolved conifold. This generalizes our previous work which proved the result for the fundamental color.
OriginalsprogEngelsk
UdgiverarXiv.org
Antal sider8
StatusUdgivet - 3. jan. 2021

Bibliografisk note

8 pages

Emneord

  • math.SG
  • hep-th
  • math.GT

Fingeraftryk

Dyk ned i forskningsemnerne om 'Colored HOMFLYPT counts holomorphic curves'. Sammen danner de et unikt fingeraftryk.

Citationsformater