Clustering High-Dimensional Data

Michael E. Houle, Marie Kiermeier, Arthur Zimek

Publikation: Kapitel i bog/rapport/konference-proceedingKapitel i bogForskningpeer review

Abstract

Clustering algorithms have been adapted or specifically designed for high-dimensional data where many attributes might be just noise such that patterns can be identified only in appropriate combinations of attributes and would be obfuscated by noise otherwise. In this chapter, we give an overview of the basic strategies and techniques used for these specialized algorithms along with pointers to example methods.
OriginalsprogEngelsk
TitelMachine Learning for Data Science Handbook : Data Mining and Knowledge Discovery Handbook
RedaktørerLior Rokach, Oded Maimon, Erez Shmueli
ForlagSpringer
Publikationsdato2023
Udgave3.
Sider219-237
ISBN (Trykt)978-3-031-24627-2, 978-3-031-24630-2
ISBN (Elektronisk)978-3-031-24628-9
DOI
StatusUdgivet - 2023

Fingeraftryk

Dyk ned i forskningsemnerne om 'Clustering High-Dimensional Data'. Sammen danner de et unikt fingeraftryk.

Citationsformater