CD163+ macrophages monitor enhanced permeability at the blood-dorsal root ganglion barrier

Harald Lund, Matthew A. Hunt, Zerina Kurtović, Katalin Sandor, Paul B. Kägy, Noah Fereydouni, Anais Julien, Christian Göritz, Elisa Vazquez-Liebanas, Maarja Andaloussi Mäe, Alexandra Jurczak, Jinming Han, Keying Zhu, Robert A. Harris, Jon Lampa, Jonas Heilskov Graversen, Anders Etzerodt, Lisbet Haglund, Tony L. Yaksh, Camilla I. Svensson

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

20 Downloads (Pure)


In dorsal root ganglia (DRG), macrophages reside close to sensory neurons and have largely been explored in the context of pain, nerve injury, and repair. However, we discovered that most DRG macrophages interact with and monitor the vasculature by sampling macromolecules from the blood. Characterization of the DRG vasculature revealed a specialized endothelial bed that transformed in molecular, structural, and permeability properties along the arteriovenous axis and was covered by macrophage-interacting pericytes and fibroblasts. Macrophage phagocytosis spatially aligned with peak endothelial permeability, a process regulated by enhanced caveolar transcytosis in endothelial cells. Profiling the DRG immune landscape revealed two subsets of perivascular macrophages with distinct transcriptome, turnover, and function. CD163+ macrophages self-maintained locally, specifically participated in vasculature monitoring, displayed distinct responses during peripheral inflammation, and were conserved in mouse and man. Our work provides a molecular explanation for the permeability of the blood-DRG barrier and identifies an unappreciated role of macrophages as integral components of the DRG-neurovascular unit.

TidsskriftThe Journal of Experimental Medicine
Udgave nummer2
Antal sider31
StatusUdgivet - 5. feb. 2024


Dyk ned i forskningsemnerne om 'CD163+ macrophages monitor enhanced permeability at the blood-dorsal root ganglion barrier'. Sammen danner de et unikt fingeraftryk.