Canonical holomorphic sections of determinant line bundles

Jens Kaad, Ryszard Nest

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

100 Downloads (Pure)

Abstract

We investigate the analytic properties of torsion isomorphisms (determinants) of mapping cone triangles of Fredholm complexes. Our main tool is a generalization to Fredholm complexes of the perturbation isomorphisms constructed by R. Carey and J. Pincus for Fredholm operators. A perturbation isomorphism is a canonical isomorphism of determinants of homology groups associated to a finite rank perturbation of Fredholm complexes. The perturbation isomorphisms allow us to establish the invariance properties of the torsion isomorphisms under finite rank perturbations. We then show that the perturbation isomorphisms provide a holomorphic structure on the determinant lines over the space of Fredholm complexes. Finally, we establish that the torsion isomorphisms and the perturbation isomorphisms provide holomorphic sections of certain determinant line bundles.

OriginalsprogEngelsk
TidsskriftJournal für die reine und angewandte Mathematik
Vol/bind746
Sider (fra-til)67-116
Antal sider50
ISSN0075-4102
DOI
StatusUdgivet - 2019

Fingeraftryk

Dyk ned i forskningsemnerne om 'Canonical holomorphic sections of determinant line bundles'. Sammen danner de et unikt fingeraftryk.

Citationsformater