TY - JOUR
T1 - Bisphenol A alters retinal morphology, visually guided behavior, and thyroid hormone levels in zebrafish larvae
AU - Volz, Sina N
AU - Poulsen, Rikke
AU - Hansen, Martin
AU - Holbech, Henrik
PY - 2024/1
Y1 - 2024/1
N2 - Bisphenols are industrial chemicals that are produced in large quantities and have been detected in all parts of the environment as well as in a multitude of different organisms including humans and fish. Several bisphenols, such as bisphenol A (BPA) and bisphenol F, have been shown to disrupt endocrine systems thereby affecting development and reproduction. While numerous studies investigated the effect of bisphenols on estrogen signaling, their impact on the thyroid hormone system (THS), which is vital for neurodevelopment including sensory development, has been explored to a lesser extent. The present work selected BPA as a representative for structurally similar bisphenols and assessed its impact on the THS as well as sensory development and function in zebrafish. To this end, zebrafish were exposed to BPA until up to 8 days post fertilization (dpf) and thyroid hormone levels, eye morphology, and sensory-mediated behaviors were analyzed. Zebrafish larvae exposed to BPA showed altered retinal layering, decreased motility across varying light conditions, and a loss of responsiveness to red light. Furthermore, whole-body levels of the thyroid hormones thyroxine (T4) and 3,5-diiodothyronine (3,5-T2) were significantly decreased in 5 dpf zebrafish. Taken together, BPA disrupted THS homeostasis and compromised visual development and function, which is pivotal for the survival of fish larvae. This work underlines the necessity for ongoing research on BPA and its numerous substitutes, particularly concerning their effects on the THS and neurodevelopment, to ensure a high level of protection for the environment and human health.
AB - Bisphenols are industrial chemicals that are produced in large quantities and have been detected in all parts of the environment as well as in a multitude of different organisms including humans and fish. Several bisphenols, such as bisphenol A (BPA) and bisphenol F, have been shown to disrupt endocrine systems thereby affecting development and reproduction. While numerous studies investigated the effect of bisphenols on estrogen signaling, their impact on the thyroid hormone system (THS), which is vital for neurodevelopment including sensory development, has been explored to a lesser extent. The present work selected BPA as a representative for structurally similar bisphenols and assessed its impact on the THS as well as sensory development and function in zebrafish. To this end, zebrafish were exposed to BPA until up to 8 days post fertilization (dpf) and thyroid hormone levels, eye morphology, and sensory-mediated behaviors were analyzed. Zebrafish larvae exposed to BPA showed altered retinal layering, decreased motility across varying light conditions, and a loss of responsiveness to red light. Furthermore, whole-body levels of the thyroid hormones thyroxine (T4) and 3,5-diiodothyronine (3,5-T2) were significantly decreased in 5 dpf zebrafish. Taken together, BPA disrupted THS homeostasis and compromised visual development and function, which is pivotal for the survival of fish larvae. This work underlines the necessity for ongoing research on BPA and its numerous substitutes, particularly concerning their effects on the THS and neurodevelopment, to ensure a high level of protection for the environment and human health.
KW - Animals
KW - Humans
KW - Zebrafish
KW - Larva
KW - Thyroid Hormones
KW - Thyroid Gland
KW - Benzhydryl Compounds/toxicity
U2 - 10.1016/j.chemosphere.2023.140776
DO - 10.1016/j.chemosphere.2023.140776
M3 - Journal article
C2 - 38000552
SN - 0045-6535
VL - 348
JO - Chemosphere
JF - Chemosphere
M1 - 140776
ER -