Bayesian Estimation Approaches for Local Intrinsic Dimensionality

Zaher Joukhadar*, Hanxun Huang, Sarah Monazam Erfani, Ricardo J. G. B. Campello, Michael E. Houle, James Bailey

*Kontaktforfatter

Publikation: Kapitel i bog/rapport/konference-proceedingKapitel i bogForskningpeer review

Abstract

Local Intrinsic Dimensionality (LID) is a measure of data complexity in the vicinity of a query point. In this work, we address the problem of estimating LID from a Bayesian perspective by establishing a theoretical framework that derives the distribution of LID given a data sample. Using this framework, we develop new LID estimators that can outperform the Maximum Likelihood Estimator (MLE) in certain contexts. The framework also provides a convenient way to incorporate prior LID knowledge through informative priors. Additionally, we demonstrate how to aggregate multiple LID distributions in a Bayesian manner using logarithmic pooling. We conduct a variety of experiments, demonstrating that a Bayesian approach to LID is effective with a small number of nearest neighbors and when incorporating informative priors. We also show that in deep neural networks, MLE produces highly volatile LID estimates, whereas a Bayesian approach that incorporates prior LID information smoothes and reduces the variance of these estimates.
OriginalsprogEngelsk
TitelSimilarity Search and Applications
RedaktørerEdgar Chávez, Benjamin Kimia, Jakub Lokoč, Marco Patella, Jan Sedmidubsky
ForlagSpringer
Publikationsdato25. okt. 2024
Sider111-125
ISBN (Trykt)978-3-031-75822-5
ISBN (Elektronisk)978-3-031-75823-2
DOI
StatusUdgivet - 25. okt. 2024
Begivenhed17th International Conference of Similarity Search and Applications - Providence, USA
Varighed: 4. nov. 20246. nov. 2024

Konference

Konference17th International Conference of Similarity Search and Applications
Land/OmrådeUSA
ByProvidence
Periode04/11/202406/11/2024
NavnLecture Notes in Computer Science
Vol/bind15268
ISSN0302-9743

Fingeraftryk

Dyk ned i forskningsemnerne om 'Bayesian Estimation Approaches for Local Intrinsic Dimensionality'. Sammen danner de et unikt fingeraftryk.

Citationsformater