Backward Differentiation Formula finite difference schemes for diffusion equations with an obstacle term

Olivier Bokanowski*, Kristian Debrabant

*Kontaktforfatter for dette arbejde

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Abstrakt

Finite difference schemes, using Backward Differentiation Formula (BDF), are studied for the approximation of one-dimensional diffusion equations with an obstacle term, of the form $$\min(v_t - a(t,x) v_{xx} + b(t,x) v_x + r(t,x) v, v- \varphi(t,x))= f(t,x).$$ For the scheme building on BDF2, we discuss unconditional stability, prove an $L^2$-error estimate and show numerically second order convergence, in both space and time, unconditionally on the ratio of the mesh steps. In the analysis, an equivalence of the obstacle equation with a Hamilton-Jacobi-Bellman equation is mentioned, and a Crank-Nicolson scheme is tested in this context. Two academic problems for parabolic equations with an obstacle term with explicit solutions and the American option problem in mathematical finance are used for numerical tests.
OriginalsprogEngelsk
TidsskriftI M A Journal of Numerical Analysis
Vol/bind41
Udgave nummer2
Sider (fra-til)900-934
ISSN0272-4979
DOI
StatusUdgivet - apr. 2021

Fingeraftryk

Dyk ned i forskningsemnerne om 'Backward Differentiation Formula finite difference schemes for diffusion equations with an obstacle term'. Sammen danner de et unikt fingeraftryk.

Citationsformater