Abstract
The aim of this paper is to present the results of an experiment towards Sonouroflowmetry, a novel approach for recognition of potential voiding dysfunctions based on machine learning classification of sound records that are obtained while a patient urinates into water in a toilet bowl. Such approach could enable a diagnosis of the voiding dysfunctions via a mobile device. We provide a comparison of 69 state-of-The-Art classification methods.
Originalsprog | Engelsk |
---|---|
Titel | Proceedings - 2015 IEEE Symposium Series on Computational Intelligence, SSCI 2015 |
Forlag | IEEE |
Publikationsdato | 2015 |
Sider | 1331-1336 |
Artikelnummer | 7376766 |
ISBN (Elektronisk) | 9781479975600 |
DOI | |
Status | Udgivet - 2015 |
Udgivet eksternt | Ja |
Begivenhed | IEEE Symposium Series on Computational Intelligence, SSCI 2015 - Cape Town, Sydafrika Varighed: 8. dec. 2015 → 10. dec. 2015 |
Konference
Konference | IEEE Symposium Series on Computational Intelligence, SSCI 2015 |
---|---|
Land/Område | Sydafrika |
By | Cape Town |
Periode | 08/12/2015 → 10/12/2015 |
Bibliografisk note
Publisher Copyright:© 2015 IEEE.