Automatic diagnosis of voiding dysfunction from sound signal

Petr Hurtik, Michal Burda, Jan Krhut, Peter Zvara, Libor Lunacek

Publikation: Kapitel i bog/rapport/konference-proceedingKonferencebidrag i proceedingsForskningpeer review

Abstract

The aim of this paper is to present the results of an experiment towards Sonouroflowmetry, a novel approach for recognition of potential voiding dysfunctions based on machine learning classification of sound records that are obtained while a patient urinates into water in a toilet bowl. Such approach could enable a diagnosis of the voiding dysfunctions via a mobile device. We provide a comparison of 69 state-of-The-Art classification methods.

OriginalsprogEngelsk
TitelProceedings - 2015 IEEE Symposium Series on Computational Intelligence, SSCI 2015
ForlagIEEE
Publikationsdato2015
Sider1331-1336
Artikelnummer7376766
ISBN (Elektronisk)9781479975600
DOI
StatusUdgivet - 2015
Udgivet eksterntJa
BegivenhedIEEE Symposium Series on Computational Intelligence, SSCI 2015 - Cape Town, Sydafrika
Varighed: 8. dec. 201510. dec. 2015

Konference

KonferenceIEEE Symposium Series on Computational Intelligence, SSCI 2015
Land/OmrådeSydafrika
ByCape Town
Periode08/12/201510/12/2015

Bibliografisk note

Publisher Copyright:
© 2015 IEEE.

Fingeraftryk

Dyk ned i forskningsemnerne om 'Automatic diagnosis of voiding dysfunction from sound signal'. Sammen danner de et unikt fingeraftryk.

Citationsformater