Argo: A big data framework for online trajectory prediction

P. Petrou, P. Nikitopoulos, P. Tampakis, A. Glenis, N. Koutroumanis, G.M. Santipantakis, K. Patroumpas, A. Vlachou, H. Georgiou, E. Chondrodima, C. Doulkeridis, N. Pelekis, G.L. Andrienko, F. Patterson, G. Fuchs, Y. Theodoridis, G.A. Vouros

Publikation: Kapitel i bog/rapport/konference-proceedingKonferencebidrag i proceedingsForskningpeer review

Abstract

We present a big data framework for the prediction of streaming trajectory data, enriched from other data sources and exploiting mined patterns of trajectories, allowing accurate long-term predictions with low latency. To meet this goal, we follow a multi-step methodology. First, we efficiently compress surveillance data in an online fashion, by constructing trajectory synopses that are spatio-temporally linked with streaming and archival data from a variety of diverse and heterogeneous data sources. The enriched stream of trajectory synopses is stored in a distributed RDF store, supporting data exploration via SPARQL queries. The enriched stream of synopses along with the raw data is consumed by trajectory prediction algorithms that exploit mined patterns from the RDF store, namely medoids of (sub-) trajectory clusters, which prolong the horizon of useful predictions. The framework is extended with offline and online interactive visual analytics tool to facilitate real world analysis in the maritime and the aviation domains.

OriginalsprogEngelsk
TitelProceedings of the 16th International Symposium on Spatial and Temporal Databases, SSTD 2019
Publikationsdato2019
Sider194-197
ISBN (Elektronisk)9781450362801
DOI
StatusUdgivet - 2019
Udgivet eksterntJa

Fingeraftryk

Dyk ned i forskningsemnerne om 'Argo: A big data framework for online trajectory prediction'. Sammen danner de et unikt fingeraftryk.

Citationsformater