Archaea oxidizing alkanes through alkyl-coenzyme M reductases

Florin Musat*, Kasper Urup Kjeldsen, Amelia-Elena Rotaru, Song-Can Chen, Niculina Musat

*Kontaktforfatter

Publikation: Bidrag til tidsskriftAnmeldelseForskningpeer review

52 Downloads (Pure)

Abstract

This review synthesizes recent discoveries of novel archaea clades capable of oxidizing higher alkanes, from volatile ones like ethane, to longer-chain alkanes like hexadecane. These archaea, termed anaerobic multicarbon alkane-oxidizing archaea (ANKA), initiate alkane oxidation using alkyl-coenzyme M reductases, enzymes similar to the methyl-coenzyme M reductases of methanogenic and anaerobic methanotrophic archaea (ANME). The alkane-oxidizing archaea group (ALOX), encompassing ANME and ANKA, harbor increasingly complex alkane degradation pathways, correlated with the alkane chain length. We discuss the evolutionary trajectory of these pathways emphasizing metabolic innovations and the acquisition of metabolic modules via lateral gene transfer. Additionally, we explore the mechanisms by which archaea couple alkane oxidation with the reduction of electron acceptors, including electron transfer to partner sulfate-reducing bacteria. The phylogenetic and functional constraints that shape ALOX-SRB associations are also discussed. We conclude by highlighting the research needs in this emerging research field, and its potential applications in biotechnology.
OriginalsprogEngelsk
Artikelnummer102486
TidsskriftCurrent Opinion in Microbiology
Vol/bind79
Antal sider9
ISSN1369-5274
DOI
StatusUdgivet - jun. 2024

Fingeraftryk

Dyk ned i forskningsemnerne om 'Archaea oxidizing alkanes through alkyl-coenzyme M reductases'. Sammen danner de et unikt fingeraftryk.

Citationsformater