Anomaly detection and explanation in context-aware software product lines

Jacopo Mauro, Michael Nieke, Christoph Seidl, Ingrid Chieh Yu

Publikation: Kapitel i bog/rapport/konference-proceedingKonferencebidrag i proceedingsForskningpeer review

Abstract

A software product line (SPL) uses a variability model, such as a feature model (FM), to describe the configuration options for a set of closely related software systems. Context-aware SPLs also consider possible environment conditions for their configuration options. Errors in modeling the FM and its context may lead to anomalies, such as dead features or a void feature model, which reduce if not negate the usefulness of the SPL. Detecting these anomalies is usually done by using Boolean satisfiability (SAT) that however are not expressive enough to detect anomalies when context is considered. In this paper, we describe HyVarRec: A tool that relies on Satisfiability Modulo Theory (SMT) to detect and explain anomalies for context-aware SPLs.

OriginalsprogEngelsk
TitelSPLC 2017 - 21st International Systems and Software Product Line Conference, Proceedings
RedaktørerWalter Cazzola, Antonio Ruiz-Cortes, David Benavides, Marcello La Rosa, Roberto E. Lopez-Herrejon, Thomas Thum, Javier Troya, Maurice ter Beek, Oscar Diaz
Antal sider4
ForlagAssociation for Computing Machinery / Special Interest Group on Programming Languages
Publikationsdato25. sep. 2017
Sider18-21
ISBN (Elektronisk)9781450351195
DOI
StatusUdgivet - 25. sep. 2017
Udgivet eksterntJa
Begivenhed21st International Systems and Software Product Line Conference, SPLC 2017 - Sevilla, Spanien
Varighed: 25. sep. 201729. sep. 2017

Konference

Konference21st International Systems and Software Product Line Conference, SPLC 2017
Land/OmrådeSpanien
BySevilla
Periode25/09/201729/09/2017
SponsorBigLever Software Inc, Hitachi

Fingeraftryk

Dyk ned i forskningsemnerne om 'Anomaly detection and explanation in context-aware software product lines'. Sammen danner de et unikt fingeraftryk.

Citationsformater