TY - JOUR
T1 - Angiotensin-(1-5) is a Potent Endogenous Angiotensin AT 2 -Receptor Agonist
AU - Souza-Silva, Igor M
AU - Peluso, A Augusto
AU - Elsaafien, Khalid
AU - Nazarova, Antonina L
AU - Assersen, Kasper B
AU - Rodrigues-Ribeiro, Lucas
AU - Mohammed, Mazher
AU - Rodrigues, André F
AU - Nawrocki, Arkadiusz
AU - Jakobsen, Lene Andrup
AU - Jensen, Pia
AU - de Kloet, Annette D
AU - Krause, Eric G
AU - Borgo, Mark Del
AU - Maslov, Ivan
AU - Widdop, Robert
AU - Santos, Robson A
AU - Bader, Michael
AU - Larsen, Martin
AU - Verano-Braga, Thiago
AU - Katritch, Vsevolod
AU - Sumners, Colin
AU - Steckelings, U Muscha
PY - 2024/4/18
Y1 - 2024/4/18
N2 - BACKGROUND: The renin-angiotensin system involves many more enzymes, receptors and biologically active peptides than originally thought. With this study, we investigated whether angiotensin-(1-5) [Ang-(1-5)], a 5-amino acid fragment of angiotensin II, has biological activity, and through which receptor it elicits effects.METHODS: The effect of Ang-(1-5) (1µM) on nitric oxide release was measured by DAF-FM staining in human aortic endothelial cells (HAEC), or Chinese Hamster Ovary (CHO) cells stably transfected with the angiotensin AT 2 -receptor (AT 2 R) or the receptor Mas. A potential vasodilatory effect of Ang-(1-5) was tested in mouse mesenteric and human renal arteries by wire myography; the effect on blood pressure was evaluated in normotensive C57BL/6 mice by Millar catheter. These experiments were performed in the presence or absence of a range of antagonists or inhibitors or in AT 2 R-knockout mice. Binding of Ang-(1-5) to the AT 2 R was confirmed and the preferred conformations determined by in silico docking simulations. The signaling network of Ang-(1-5) was mapped by quantitative phosphoproteomics.RESULTS: Key findings included: (1) Ang-(1-5) induced activation of eNOS by changes in phosphorylation at Ser1177 eNOS and Tyr657 eNOS and thereby (2) increased NO release from HAEC and AT 2 R-transfected CHO cells, but not from Mas-transfected or non-transfected CHO cells. (3) Ang-(1-5) induced relaxation of preconstricted mouse mesenteric and human renal arteries and (4) lowered blood pressure in normotensive mice - effects which were respectively absent in arteries from AT 2 R-KO or in PD123319-treated mice and which were more potent than effects of the established AT 2 R-agonist C21. (5) According to in silico modelling, Ang-(1-5) binds to the AT 2 R in two preferred conformations, one differing substantially from where the first five amino acids within angiotensin II bind to the AT 2 R. (6) Ang-(1-5) modifies signaling pathways in a protective RAS-typical way and with relevance for endothelial cell physiology and disease.CONCLUSIONS: Ang-(1-5) is a potent, endogenous AT 2 R-agonist.
AB - BACKGROUND: The renin-angiotensin system involves many more enzymes, receptors and biologically active peptides than originally thought. With this study, we investigated whether angiotensin-(1-5) [Ang-(1-5)], a 5-amino acid fragment of angiotensin II, has biological activity, and through which receptor it elicits effects.METHODS: The effect of Ang-(1-5) (1µM) on nitric oxide release was measured by DAF-FM staining in human aortic endothelial cells (HAEC), or Chinese Hamster Ovary (CHO) cells stably transfected with the angiotensin AT 2 -receptor (AT 2 R) or the receptor Mas. A potential vasodilatory effect of Ang-(1-5) was tested in mouse mesenteric and human renal arteries by wire myography; the effect on blood pressure was evaluated in normotensive C57BL/6 mice by Millar catheter. These experiments were performed in the presence or absence of a range of antagonists or inhibitors or in AT 2 R-knockout mice. Binding of Ang-(1-5) to the AT 2 R was confirmed and the preferred conformations determined by in silico docking simulations. The signaling network of Ang-(1-5) was mapped by quantitative phosphoproteomics.RESULTS: Key findings included: (1) Ang-(1-5) induced activation of eNOS by changes in phosphorylation at Ser1177 eNOS and Tyr657 eNOS and thereby (2) increased NO release from HAEC and AT 2 R-transfected CHO cells, but not from Mas-transfected or non-transfected CHO cells. (3) Ang-(1-5) induced relaxation of preconstricted mouse mesenteric and human renal arteries and (4) lowered blood pressure in normotensive mice - effects which were respectively absent in arteries from AT 2 R-KO or in PD123319-treated mice and which were more potent than effects of the established AT 2 R-agonist C21. (5) According to in silico modelling, Ang-(1-5) binds to the AT 2 R in two preferred conformations, one differing substantially from where the first five amino acids within angiotensin II bind to the AT 2 R. (6) Ang-(1-5) modifies signaling pathways in a protective RAS-typical way and with relevance for endothelial cell physiology and disease.CONCLUSIONS: Ang-(1-5) is a potent, endogenous AT 2 R-agonist.
U2 - 10.1101/2024.04.05.588367
DO - 10.1101/2024.04.05.588367
M3 - Journal article
C2 - 38948791
SN - 2692-8205
JO - BioRxiv
JF - BioRxiv
ER -