An asymptotically unbiased minimum density power divergence estimator for the Pareto-tail index

Goedele Dierckx, Yuri Goegebeur, Armelle Guillou

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Abstract

We introduce a robust and asymptotically unbiased estimator for the tail index of Pareto-type distributions. The estimator is obtained by fitting the extended Pareto distribution to the relative excesses over a high threshold with the minimum density power divergence criterion. Consistency and asymptotic normality of the estimator is established under a second order condition on the distribution underlying the data, and for intermediate sequences of upper order statistics. The finite sample properties of the proposed estimator and some alternatives from the extreme value literature are evaluated by a small simulation experiment involving both uncontaminated and contaminated samples. (C) 2013 Elsevier Inc. All rights reserved.
OriginalsprogEngelsk
TidsskriftJournal of Multivariate Analysis
Vol/bind121
Sider (fra-til)70-86
ISSN0047-259X
DOI
StatusUdgivet - 2013

Fingeraftryk

Dyk ned i forskningsemnerne om 'An asymptotically unbiased minimum density power divergence estimator for the Pareto-tail index'. Sammen danner de et unikt fingeraftryk.

Citationsformater