Algebraic K-theory and a semifinite Fuglede-Kadison determinant

Peter Hochs, Jens Kaad, André Schemaitat

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

132 Downloads (Pure)

Abstract

In this paper we apply algebraic K-theory techniques to construct a Fuglede–Kadison type determinant for a semifinite von Neumann algebra equipped with a fixed trace. Our construction is based on the approach to determinants for Banach algebras developed by Skandalis and de la Harpe. This approach can be extended to the semifinite case since the first topological K-group of the trace ideal in a semifinite von Neumann algebra is trivial. Along the way we also improve the methods of Skandalis and de la Harpe by considering relative K-groups with respect to an ideal instead of the usual absolute K-groups. Our construction recovers the determinant homomorphism introduced by Brown, but all the relevant algebraic properties are automatic due to the algebraic K-theory framework.
OriginalsprogEngelsk
TidsskriftAnnals of K-Theory
Vol/bind3
Udgave nummer2
Sider (fra-til)193–206
ISSN2379-1683
DOI
StatusUdgivet - mar. 2018

Fingeraftryk

Dyk ned i forskningsemnerne om 'Algebraic K-theory and a semifinite Fuglede-Kadison determinant'. Sammen danner de et unikt fingeraftryk.

Citationsformater