The mineralocorticoid aldosterone increases in plasma in healthy pregnancy along with renin and angiotensin II and plays a key role in the physiological plasma volume expansion. In mice, aldosterone contributes to an optimal fetal development by enhancing PlGF (placental growth factor) expression and trophoblast cell proliferation. In preeclampsia, there is coincident suppression of aldosterone and impaired placental development. We hypothesized that aldosterone independently contributes to placental and birth weight in humans, and high dietary sodium and low potassium intakes affect this relationship adversely. We analyzed 24-hour urine collections and plasma samples from gestational week 29 in a subsample of 569 pregnant women from the Odense Child Cohort-a Danish population-based longitudinal cohort study. Plasma and urinary aldosterone were measured by ELISA, sodium and potassium excretions by flame photometer. Predictive values of aldosterone levels and sodium and potassium intakes were assessed by multiple and Cox regression analyses. Primary outcomes were placental weight and birth weight. Secondary outcome was preeclampsia. Urinary aldosterone excretion at gestational week 29 independently contributed to placental and birth weights (adjusted β-coefficients [95% CI], 24.50 [9.66-39.35] and 9.59 [4.57-14.61], respectively). Aldosterone levels were not associated to preeclampsia incidence. Salt intake >6 g/d was associated with development of preeclampsia (hazard ratio [95% CI], 5.68 [1.51-21.36]). At gestational week 29, urinary aldosterone excretion is an independent predictor of placental and birth weights. High salt intake is a risk factor for preeclampsia. In perspective, suppression of aldosterone in pregnancy has adverse trophic effects.

Udgave nummer2
Sider (fra-til)391-398
StatusUdgivet - aug. 2019


Dyk ned i forskningsemnerne om 'Aldosterone, Salt, and Potassium Intakes as Predictors of Pregnancy Outcome, Including Preeclampsia'. Sammen danner de et unikt fingeraftryk.