Administration of Protein Kinase D1 Induces a Protective Effect on Lipopolysaccharide-Induced Intestinal Inflammation in a Co-Culture Model of Intestinal Epithelial Caco-2 Cells and RAW264.7 Macrophage Cells

Ditte Søvsø Gundelund Nielsen, Marlene Fredborg, Vibeke Andersen, Stig Purup

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

78 Downloads (Pure)

Resumé

Inflammatory bowel diseases (IBD) are chronic inflammatory diseases involving all or part of the gastrointestinal tract. The stress-activated serine-threonine protein kinase D1 (PKD1) protein has previously been implicated in intestinal immune regulation. The objective of this study was to evaluate the effects of human PKD1 in relation to intestinal inflammation, using a co-culture model of intestinal epithelial Caco-2 cells and RAW264.7 macrophages. An inflammatory response was induced in the macrophages by lipopolysaccharide (LPS), upregulating the expression of tumour necrosis factor alpha (TNF-α), interleukin- (IL-) 1β, and IL-6 besides increasing the secretion of TNF-α protein. The effect of administering PKD1 to Caco-2 was evaluated in relation to both amelioration of inflammation and the ability to suppress inflammation initiation. Administration of PKD1 (10-100 ng/ml) following induction of inflammation induced downregulation of TNF-α expression in RAW264.7 cells. In addition, PKD1 administered for 3 h prior to LPS stimulation reduced the subsequent inflammatory response through downregulation of TNF-α, IL-1β, and IL-6 in RAW264.7 cells. These results demonstrate a potential role of PKD1 in the intercellular communication between intestinal epithelial and immune cells, proposing a protective effect of PKD1 on the induction of an inflammatory response in macrophages, an important aspect during the pathogenesis of IBD.

OriginalsprogEngelsk
Artikelnummer9273640
TidsskriftInternational Journal of Inflammation
Vol/bind2017
Antal sider7
ISSN2042-0099
DOI
StatusUdgivet - 2017

Fingeraftryk

Caco-2 Cells
Coculture Techniques
Epithelial Cells
Macrophages
Tumor Necrosis Factor-alpha
Inflammatory Bowel Diseases
Interleukin-6
Down-Regulation
Gastrointestinal Tract
Proteins

Citer dette

@article{160a1fee700e4a92a916687ea8fc4354,
title = "Administration of Protein Kinase D1 Induces a Protective Effect on Lipopolysaccharide-Induced Intestinal Inflammation in a Co-Culture Model of Intestinal Epithelial Caco-2 Cells and RAW264.7 Macrophage Cells",
abstract = "Inflammatory bowel diseases (IBD) are chronic inflammatory diseases involving all or part of the gastrointestinal tract. The stress-activated serine-threonine protein kinase D1 (PKD1) protein has previously been implicated in intestinal immune regulation. The objective of this study was to evaluate the effects of human PKD1 in relation to intestinal inflammation, using a co-culture model of intestinal epithelial Caco-2 cells and RAW264.7 macrophages. An inflammatory response was induced in the macrophages by lipopolysaccharide (LPS), upregulating the expression of tumour necrosis factor alpha (TNF-α), interleukin- (IL-) 1β, and IL-6 besides increasing the secretion of TNF-α protein. The effect of administering PKD1 to Caco-2 was evaluated in relation to both amelioration of inflammation and the ability to suppress inflammation initiation. Administration of PKD1 (10-100 ng/ml) following induction of inflammation induced downregulation of TNF-α expression in RAW264.7 cells. In addition, PKD1 administered for 3 h prior to LPS stimulation reduced the subsequent inflammatory response through downregulation of TNF-α, IL-1β, and IL-6 in RAW264.7 cells. These results demonstrate a potential role of PKD1 in the intercellular communication between intestinal epithelial and immune cells, proposing a protective effect of PKD1 on the induction of an inflammatory response in macrophages, an important aspect during the pathogenesis of IBD.",
keywords = "Journal Article",
author = "Nielsen, {Ditte S{\o}vs{\o} Gundelund} and Marlene Fredborg and Vibeke Andersen and Stig Purup",
year = "2017",
doi = "10.1155/2017/9273640",
language = "English",
volume = "2017",
journal = "International Journal of Inflammation",
issn = "2042-0099",
publisher = "Hindawi Publishing Corporation",

}

Administration of Protein Kinase D1 Induces a Protective Effect on Lipopolysaccharide-Induced Intestinal Inflammation in a Co-Culture Model of Intestinal Epithelial Caco-2 Cells and RAW264.7 Macrophage Cells. / Nielsen, Ditte Søvsø Gundelund; Fredborg, Marlene; Andersen, Vibeke; Purup, Stig.

I: International Journal of Inflammation, Bind 2017, 9273640, 2017.

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

TY - JOUR

T1 - Administration of Protein Kinase D1 Induces a Protective Effect on Lipopolysaccharide-Induced Intestinal Inflammation in a Co-Culture Model of Intestinal Epithelial Caco-2 Cells and RAW264.7 Macrophage Cells

AU - Nielsen, Ditte Søvsø Gundelund

AU - Fredborg, Marlene

AU - Andersen, Vibeke

AU - Purup, Stig

PY - 2017

Y1 - 2017

N2 - Inflammatory bowel diseases (IBD) are chronic inflammatory diseases involving all or part of the gastrointestinal tract. The stress-activated serine-threonine protein kinase D1 (PKD1) protein has previously been implicated in intestinal immune regulation. The objective of this study was to evaluate the effects of human PKD1 in relation to intestinal inflammation, using a co-culture model of intestinal epithelial Caco-2 cells and RAW264.7 macrophages. An inflammatory response was induced in the macrophages by lipopolysaccharide (LPS), upregulating the expression of tumour necrosis factor alpha (TNF-α), interleukin- (IL-) 1β, and IL-6 besides increasing the secretion of TNF-α protein. The effect of administering PKD1 to Caco-2 was evaluated in relation to both amelioration of inflammation and the ability to suppress inflammation initiation. Administration of PKD1 (10-100 ng/ml) following induction of inflammation induced downregulation of TNF-α expression in RAW264.7 cells. In addition, PKD1 administered for 3 h prior to LPS stimulation reduced the subsequent inflammatory response through downregulation of TNF-α, IL-1β, and IL-6 in RAW264.7 cells. These results demonstrate a potential role of PKD1 in the intercellular communication between intestinal epithelial and immune cells, proposing a protective effect of PKD1 on the induction of an inflammatory response in macrophages, an important aspect during the pathogenesis of IBD.

AB - Inflammatory bowel diseases (IBD) are chronic inflammatory diseases involving all or part of the gastrointestinal tract. The stress-activated serine-threonine protein kinase D1 (PKD1) protein has previously been implicated in intestinal immune regulation. The objective of this study was to evaluate the effects of human PKD1 in relation to intestinal inflammation, using a co-culture model of intestinal epithelial Caco-2 cells and RAW264.7 macrophages. An inflammatory response was induced in the macrophages by lipopolysaccharide (LPS), upregulating the expression of tumour necrosis factor alpha (TNF-α), interleukin- (IL-) 1β, and IL-6 besides increasing the secretion of TNF-α protein. The effect of administering PKD1 to Caco-2 was evaluated in relation to both amelioration of inflammation and the ability to suppress inflammation initiation. Administration of PKD1 (10-100 ng/ml) following induction of inflammation induced downregulation of TNF-α expression in RAW264.7 cells. In addition, PKD1 administered for 3 h prior to LPS stimulation reduced the subsequent inflammatory response through downregulation of TNF-α, IL-1β, and IL-6 in RAW264.7 cells. These results demonstrate a potential role of PKD1 in the intercellular communication between intestinal epithelial and immune cells, proposing a protective effect of PKD1 on the induction of an inflammatory response in macrophages, an important aspect during the pathogenesis of IBD.

KW - Journal Article

U2 - 10.1155/2017/9273640

DO - 10.1155/2017/9273640

M3 - Journal article

VL - 2017

JO - International Journal of Inflammation

JF - International Journal of Inflammation

SN - 2042-0099

M1 - 9273640

ER -