A transformation rule for the index of commuting operators

Jens Kaad, Ryszard Nest

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Abstract

In the setting of several commuting operators on a Hilbert space one defines the notions of invertibility and Fredholmness in terms of the associated Koszul complex. The index problem then consists of computing the Euler characteristic of such a special type of Fredholm complex. In this paper we investigate transformation rules for the index under the holomorphic functional calculus. We distinguish between two different types of index results: 1) A global index theorem which expresses the index in terms of the degree function of the "symbol" and the locally constant index function of the "variables". 2) A local index theorem which computes the Euler characteristic of a localized Koszul complex near a common zero of the "symbol". Our results apply to the example of Toeplitz operators acting on both Bergman spaces over pseudoconvex domains and the Hardy space over the polydisc. The local index theorem is fundamental for future investigations of determinants and torsion of Koszul complexes.

OriginalsprogEngelsk
TidsskriftJournal of Noncommutative Geometry
Vol/bind9
Udgave nummer1
Sider (fra-til)83-119
ISSN1661-6952
DOI
StatusUdgivet - 2015
Udgivet eksterntJa

Fingeraftryk

Dyk ned i forskningsemnerne om 'A transformation rule for the index of commuting operators'. Sammen danner de et unikt fingeraftryk.

Citationsformater