A review of the MSCA ITN ECOSTORE-Novel complex metal hydrides for efficient and compact storage of renewable energy as hydrogen and electricity

Efi Hadjixenophontos*, Erika Michela Dematteis*, Nicola Berti*, Anna Roza Wołczyk*, Priscilla Huen*, Matteo Brighi*, Thi Thu Le*, Antonio Santoru*, Seyed Hosein Payandeh*, Filippo Peru*, Anh Ha Dao*, Yinzhe Liu*, Michael Heere*

*Kontaktforfatter for dette arbejde

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

41 Downloads (Pure)

Abstrakt

Hydrogen as an energy carrier is very versatile in energy storage applications. Developments in novel, sustainable technologies towards a CO2-free society are needed and the exploration of all-solid-state batteries (ASSBs) as well as solid-state hydrogen storage applications based on metal hydrides can provide solutions for such technologies. However, there are still many technical challenges for both hydrogen storage material and ASSBs related to designing low-cost materials with low-environmental impact. The current materials considered for all-solid-state batteries should have high conductivities for Na+, Mg2+ and Ca2+, while Al3+-based compounds are often marginalised due to the lack of suitable electrode and electrolyte materials. In hydrogen storage materials, the sluggish kinetic behaviour of solid-state hydride materials is one of the key constraints that limit their practical uses. Therefore, it is necessary to overcome the kinetic issues of hydride materials before discussing and considering them on the system level. This review summarizes the achievements of the Marie Sklodowska-Curie Actions (MSCA) innovative training network (ITN) ECOSTORE, the aim of which was the investigation of different aspects of (complex) metal hydride materials. Advances in battery and hydrogen storage materials for the efficient and compact storage of renewable energy production are discussed.

OriginalsprogEngelsk
Artikelnummer17
TidsskriftInorganics
Vol/bind8
Udgave nummer3
Antal sider72
ISSN2304-6740
DOI
StatusUdgivet - 2020

Fingeraftryk Dyk ned i forskningsemnerne om 'A review of the MSCA ITN ECOSTORE-Novel complex metal hydrides for efficient and compact storage of renewable energy as hydrogen and electricity'. Sammen danner de et unikt fingeraftryk.

  • Citationsformater

    Hadjixenophontos, E., Dematteis, E. M., Berti, N., Wołczyk, A. R., Huen, P., Brighi, M., Le, T. T., Santoru, A., Payandeh, S. H., Peru, F., Dao, A. H., Liu, Y., & Heere, M. (2020). A review of the MSCA ITN ECOSTORE-Novel complex metal hydrides for efficient and compact storage of renewable energy as hydrogen and electricity. Inorganics, 8(3), [17]. https://doi.org/10.3390/inorganics8030017