Projekter pr. år
Abstract
Prediction of alcohol use disorder (AUD) may reduce the number of deaths caused by alcohol-related diseases. However, prediction of AUD based on patients' historical clinical data is still an open research objective. This study proposes a method to predict AUD from electronic health record (EHR) data through supervised machine learning. The study creates a dataset based on the combination of EHR data with patient reported data from 2,571 patients in the Region of Southern Denmark. After that, the dataset is labeled into two categories, AUD positive (457) and AUD negative (2,114). This unique dataset is used to validate the proposed method for prediction of AUD using machine learning methods based on historical clinical data from EHRs.
Originalsprog | Engelsk |
---|---|
Titel | 2020 IEEE Symposium on Computers and Communications (ISCC) |
Antal sider | 7 |
Forlag | IEEE |
Publikationsdato | 2020 |
ISBN (Elektronisk) | 9781728180861 |
DOI | |
Status | Udgivet - 2020 |
Begivenhed | 2020 IEEE Symposium on Computers and Communications, ISCC 2020 - Rennes, Frankrig Varighed: 7. jul. 2020 → 10. jul. 2020 |
Konference
Konference | 2020 IEEE Symposium on Computers and Communications, ISCC 2020 |
---|---|
Land/Område | Frankrig |
By | Rennes |
Periode | 07/07/2020 → 10/07/2020 |
Navn | Proceedings - IEEE Symposium on Computers and Communications |
---|---|
Vol/bind | 2020-July |
ISSN | 1530-1346 |
Fingeraftryk
Dyk ned i forskningsemnerne om 'A Predictive Machine Learning Model to Determine Alcohol Use Disorder'. Sammen danner de et unikt fingeraftryk.Relaterede Projekter
- 1 Afsluttet
-
RELIP
Ebrahimi, A., Wiil, U. K., Andersen, K., Christiansen, R. & Nielsen, A. S.
01/05/2018 → 31/12/2021
Projekter: Projekt › Ph.d-projekt