A powerful procedure for optimizing AGP states

H. J. Aa. Jensen*, B. Weiner, J. V. Ortiz, Y. Öhrn

*Kontaktforfatter for dette arbejde

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Abstrakt

We present a powerful iterative algorithm for optimizing the geminal coefficients of an antisymmetrized geminal power (AGP) wavefunction. The algorithm is based on the lowest eigenvector of a matrix closely related to the Hessian of the problem. This matrix can be derived either by using Euler's theorem or by utilizing a unitary group approach. Two important features of the scheme are that it will always converge towards a minimum and that in the neighborhood of a minimum it is comparable to a quadratically convergent Newton‐Raphson method.

OriginalsprogEngelsk
TidsskriftInternational Journal of Quantum Chemistry
Vol/bind22
Udgave nummer16 S
Sider (fra-til)615-631
Antal sider17
ISSN0020-7608
DOI
StatusUdgivet - 1. jan. 1982

Fingeraftryk Dyk ned i forskningsemnerne om 'A powerful procedure for optimizing AGP states'. Sammen danner de et unikt fingeraftryk.

Citationsformater