Abstract
I present a new proof of Kirchberg's O 22-stable classification theorem: two separable, nuclear, stable/unital, O 2-stable C C ∗ -algebras are isomorphic if and only if their ideal lattices are order isomorphic, or equivalently, their primitive ideal spaces are homeomorphic. Many intermediate results do not depend on pure infiniteness of any sort.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Journal fuer die Reine und Angewandte Mathematik |
Vol/bind | 2020 |
Udgave nummer | 761 |
Sider (fra-til) | 247-289 |
ISSN | 0075-4102 |
DOI | |
Status | Udgivet - apr. 2020 |
Udgivet eksternt | Ja |