A Model-Based Scalability Optimization Methodology for Cloud Applications

Jia Chun Lin, Jacopo Mauro, Thomas Brox Røst, Ingrid Chieh Yu

Publikation: Kapitel i bog/rapport/konference-proceedingKonferencebidrag i proceedingsForskningpeer review

Abstract

Complex applications composed of many interconnected but functionally independent services or components are widely adopted and deployed on the cloud to exploit its elasticity. This allows the application to react to load changes by varying the amount of computational resources used. Deciding the proper scaling settings for a complex architecture is, however, a daunting task: many possible settings exists with big repercussions in terms of performance and cost. In this paper, we present a methodology that, by relying on modeling and automatic parameter configurators, allows to understand the best way to configure the scalability of the application to be deployed on the cloud. We exemplify the approach by using an existing service-oriented framework to dispatch car software updates.

OriginalsprogEngelsk
TitelProceedings - 2017 IEEE 7th International Symposium on Cloud and Service Computing, SC2 2017
Antal sider8
ForlagIEEE
Publikationsdato13. mar. 2018
Sider163-170
ISBN (Elektronisk)9780769563282
DOI
StatusUdgivet - 13. mar. 2018
Udgivet eksterntJa
Begivenhed7th IEEE International Symposium on Cloud and Service Computing, SC2 2017 - Kanazawa, Japan
Varighed: 22. nov. 201725. nov. 2017

Konference

Konference7th IEEE International Symposium on Cloud and Service Computing, SC2 2017
Land/OmrådeJapan
ByKanazawa
Periode22/11/201725/11/2017

Fingeraftryk

Dyk ned i forskningsemnerne om 'A Model-Based Scalability Optimization Methodology for Cloud Applications'. Sammen danner de et unikt fingeraftryk.

Citationsformater