A Maximal Rowing-Ergometer Protocol to Predict Maximal Oxygen Uptake in Female Rowers

Oscar B. Mazza, Søren Gam, Mikkel E.I. Kolind, Christian Kiær, Christina Donstrup, Kurt Jensen*

*Kontaktforfatter

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Abstract

BACKGROUND: Laboratory assessment of maximal oxygen uptake (V˙O2max) is physically and mentally draining for the athlete and requires expensive laboratory equipment. Indirect measurement of V˙O2max could provide a practical alternative to laboratory testing. PURPOSE: To examine the relationship between the maximal power output (MPO) in an individualized 7 × 2-minute incremental test (INCR-test) and V˙O2max and to develop a regression equation to predict V˙O2max from MPO in female rowers. METHODS: Twenty female club and Olympic rowers (development group) performed the INCR-test on a Concept2 rowing ergometer to determine V˙O2max and MPO. A linear regression analysis was used to develop a prediction of V˙O2max from MPO. Cross-validation analysis of the prediction equation was performed using an independent sample of 10 female rowers (validation group). RESULTS: A high correlation coefficient (r = .94) was found between MPO and V˙O2max. The following prediction equation was developed: V˙O2max (mL·min-1) = 9.58 × MPO (W) + 958. No difference was found between the mean predicted V˙O2max in the INCR-test (3480 mL·min-1) and the measured V˙O2max (3530 mL·min-1). The standard error of estimate was 162 mL·min-1, and the percentage standard error of estimate was 4.6%. The prediction model only including MPO, determined during the INCR-test, explained 89% of the variability in V˙O2max. CONCLUSION: The INCR-test is a practical and accessible alternative to laboratory testing of V˙O2max.

OriginalsprogEngelsk
TidsskriftInternational Journal of Sports Physiology and Performance
Vol/bind18
Udgave nummer8
Sider (fra-til)861-865
ISSN1555-0265
DOI
StatusUdgivet - aug. 2023

Fingeraftryk

Dyk ned i forskningsemnerne om 'A Maximal Rowing-Ergometer Protocol to Predict Maximal Oxygen Uptake in Female Rowers'. Sammen danner de et unikt fingeraftryk.

Citationsformater