3D Reconstruction of Power Lines Using UAV Images to Monitor Corridor Clearance

Elzbieta Pastucha, Edyta Puniach*, Agnieszka Scislowicz, Paweł Cwiakała, Witold Niewiem, Pawel Wiacek

*Kontaktforfatter for dette arbejde

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

28 Downloads (Pure)


Regular power line inspections are essential to ensure the reliability of electricity supply. The inspections of overground power submission lines include corridor clearance monitoring and fault identification. The power lines corridor is a three-dimensional space around power cables defined by a set distance. Any obstacles breaching this space should be detected, as they potentially threaten the safety of the infrastructure. Corridor clearance monitoring is usually performed either by a labor-intensive total station survey (TS), terrestrial laser scanning (TLS), or expensive airborne laser scanning (ALS) from a plane or a helicopter. This paper proposes a method that uses unmanned aerial vehicle (UAV) images to monitor corridor clearance. To maintain the adequate accuracy of the relative position of wires in regard to surrounding obstacles, the same data were used both to reconstruct a point cloud representation of a digital surface model (DSM) and a 3D power line. The proposed algorithm detects power lines in a series of images using decorrelation stretch for initial image processing, the modified Prewitt filter for edge enhancement, random sample consensus (RANSAC) with additional parameters for line fitting, and epipolar geometry for 3D reconstruction. DSM points intruding into the corridor are then detected by calculating the spatial distance between a reconstructed power line and the DSM point cloud representation. Problematic objects are localized by segmenting points into voxels and then subsequent clusterization. The processing results were compared to the results of two verification methods—TS and TLS. The comparison results show that the proposed method can be used to survey power lines with an accuracy consistent with that of classical measurements
TidsskriftRemote Sensing
Udgave nummer22
Antal sider31
StatusUdgivet - 2. nov. 2020

Bibliografisk note

peer review, Remote Sensing (ISSN 2072-4292), https://www.mdpi.com/journal/remotesensing


Dyk ned i forskningsemnerne om '3D Reconstruction of Power Lines Using UAV Images to Monitor Corridor Clearance'. Sammen danner de et unikt fingeraftryk.