3-d Calabi–Yau categories for Teichmüller theory

Fabian Haiden*

*Kontaktforfatter

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

4 Downloads (Pure)

Abstract

For g; n ≥ 0, we construct a 3-dimensional Calabi–Yau A1-category Cg;n such that a component of the space of Bridgeland stability conditions, Stab(Cg;n), is a moduli space of quadratic differentials on a genus-g surface with simple zeros and n simple poles. For a generic point in the moduli space, we compute the corresponding quantum/refined Donaldson–Thomas (DT) invariants in terms of counts of finite-length geodesics on the flat surface determined by the quadratic differential. As a consequence, we find that these counts satisfy wall-crossing formulas.

OriginalsprogEngelsk
TidsskriftDuke Mathematical Journal
Vol/bind173
Udgave nummer2
Sider (fra-til)277-346
Antal sider70
ISSN0012-7094
DOI
StatusUdgivet - feb. 2024

Fingeraftryk

Dyk ned i forskningsemnerne om '3-d Calabi–Yau categories for Teichmüller theory'. Sammen danner de et unikt fingeraftryk.

Citationsformater