Abstract
For g; n ≥ 0, we construct a 3-dimensional Calabi–Yau A1-category Cg;n such that a component of the space of Bridgeland stability conditions, Stab(Cg;n), is a moduli space of quadratic differentials on a genus-g surface with simple zeros and n simple poles. For a generic point in the moduli space, we compute the corresponding quantum/refined Donaldson–Thomas (DT) invariants in terms of counts of finite-length geodesics on the flat surface determined by the quadratic differential. As a consequence, we find that these counts satisfy wall-crossing formulas.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Duke Mathematical Journal |
Vol/bind | 173 |
Udgave nummer | 2 |
Sider (fra-til) | 277-346 |
Antal sider | 70 |
ISSN | 0012-7094 |
DOI | |
Status | Udgivet - feb. 2024 |