PhD course preference measurement methods: Measuring Preferences using Conjoint Analytic Methods and Advanced Compositional Approaches

Martin Meißner (Foredragsholder)

Aktivitet: Foredrag og mundtlige bidragForedrag og præsentationer i privat eller offentlig virksomhed


The participants of this course develop a sound understanding of the benefits of using conjoint analytic preferences measurement approaches and alternative advanced compositional approaches. Participants gain practical experience of using conjoint-analytic methods, and develop a better understanding of the value of measuring preferences.

The course starts with introducing the basic concepts behind the measurement of stated preferences, specifically focusing on conjoint analysis. The most often used approaches, i.e. traditional conjoint analysis, adaptive conjoint analysis and choice-based conjoint analysis are introduced. We deliberate on advantages and disadvantages of the approaches and also discuss advanced compositional approaches, like pairwise-comparison based preference measurement and the adaptive self-explicated approach. During the workshop we will further talk about all the important stages of designing a preference measurement study. We pay special attention to the types of research questions that conjoint analysis can answer. We also discuss the most important questions you should answer before setting up your preference measurement/conjoint study: What is the optimal choice of attributes and attribute level? What is a good experimental design? How should I design my survey design and present potential choice scenarios? How do I analyze the results?

Participants will have the opportunity to use Sawtooth Software on their own laptops and build their own conjoint analysis survey during the course. Based on this experience, participants will be able to improve the planning of their own future experiments.

Institution: Helmut-Schmidt-University Hamburg/Syddansk Universitet, Sønderborg (SDU), Denmark
Periode1. dec. 2016
Sted for afholdelseUnknown external organisation, Ukendt